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Abstract—Maulti-Target Cross Domain Recommendation(CDR)
has attracted a surge of interest recently, which intends to
improve the recommendation performance in multiple domains
(or systems) simultaneously. Most existing multi-target CDR
frameworks primarily rely on the existence of the majority of
overlapped users across domains. However, general practical
CDR scenarios cannot meet the strictly overlapping requirements
and only share a small margin of common users across domains.
Additionally, the majority of users have quite a few historical
behaviors in such small-overlapping CDR scenarios. To tackle the
aforementioned issues, we propose a simple-yet-effective neural
node matching based framework for more general CDR settings,
i.e., only (few) partially overlapped users exist across domains
and most overlapped as well as non-overlapped users do have
sparse interactions. The present framework mainly contains
two modules: (i) intra-to-inter node matching module, and (ii)
intra node complementing module. Concretely, the first module
conducts intra-knowledge fusion within each domain and subse-
quent inter-knowledge fusion across domains by fully connected
user-user homogeneous graph information aggregating. By doing
this, the knowledge of all users, especially the non-overlapping
users, could be well extracted and transferred without relying
heavily on overlapping users. The second module introduces
user-item matching to complement the potential missing in-
teractions for each user and correct his/her under-represented
representations, especially for the users with observed sparse
interactions. Essentially, companion objectives are also inserted
into each module to guide the knowledge transferring pro-
cedures, which leads to positive effects on multiple domains
simultaneously. Extensive experiments on four multi-target CDR
tasks from both public and real-world large-scale financial
industry datasets demonstrate the remarkable performance of
our proposed approach. Our code is publicly available at the
link: https://github.com/WujiangXu/NMCDRR.

Index Terms—Recommendation, Cross-Domain Recommenda-
tion, Neural Graph Matching

I. INTRODUCTION

With the rapid development of the digital era, an increasing
number of users participate in multiple domains (platforms) for
various purposes. Since the overlapped users across domains
are likely to have similar interests, it is possible to boost the
recommendation performance of other (target) domains by
using information collected from several (source) domains,
which is the core idea of Cross-Domain Recommendation

* Joint first author. § Correspondding author.

(CDR). According to different recommendation scenarios,
CDR problems can be generally classified into two categories:
single-target CDR and multi-target CDR. The conventional
single-target CDR aims at using source domain information
to enhance recommendation performance in target domain.
Multi-target CDR expects to improve the recommendation
performance in multiple domains simultaneously and has re-
cently attracted increasing attention. To achieve a valid multi-
target CDR performance, several excellent works focusing on
feature combination [/1]—[3] or bi-directional transfer mapping
strategies [4]-[7]] have been proposed. However, these learning
frameworks primarily assume the existence of fully overlapped
users across domains, which is difficult to cope with general
partially overlapped CDR scenarios. In this work, we focus on
developing an effective multi-target CDR model for the more
general CDR settings with (few) partially overlapped users.
This intention faces two critical challenges.

CH1. For multiple domains with only (few) partially over-
lapped users, how to improve the recommendation perfor-
mance for multi-target CDR tasks?

Most previous multi-target CDR methods cannot be directly
extended to partially overlapped CDR settings, especially
for few overlapped users across domains. To explore the
knowledge of the non-overlapped users, several recent efforts
[8]-[11] try to introduce graphic deep learning to get both
overlapped and non-overlapped user embeddings by collect-
ing user-item interactions. However, such graph-based CDR
approaches still rely heavily on overlapped users (more than
80% are common users across domains) to bridge connec-
tions among multiple domains and then conduct knowledge
aggregation and transition processes to get the representative
embeddings of non-overlapped users. Nevertheless, in small-
overlapping CDR scenarios, such above methods have great
limitations. Therefore, it is challenging to guarantee the multi-
target cross-domain recommendation performance with only
quite a few overlapping users. To mitigate the small overlap-
ping problem, the recent model PTUPCDR [12] proposes a
meta network fed with pre-trained user/item representations to
generate personalized bridge functions to transfer preference
for each user, while VDEA [13] utilizes VAE framework
to exploit user domain-invariant embedding across different
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Fig. 1: The partially overlapped CDR scenarios.

domains. However, such methods treat all users equally and
do not pay special attention to the majority of data-sparse users
(i.e., users with quite a few historical behaviors), resulting in
inferior knowledge fusing and transferring effectiveness, which
leads to the second challenge.

CH2. For the majority of overlapping as well as non-
overlapping users with few historical behaviors, how to im-
prove the recommendation performance of multiple domains
simultaneously?

The user-item interactions of the most real-world recom-
mendation systems generally present the intrinsic long-tailed
distribution, which means that a majority of users (i.e., tail
users) have very few interactions and a few users (i.e., head
users) have a huge number of interactions. Consider the toy
example shown in Fig. [, Mary and Alice could be roughly
treated as head users, while Mike, Lily, Rose, and Tom could
be treated as tail users. Essentially, both the overlapping and
non-overlapping tail users may be under-represented based
on their observed sparse interactions, since most representing
CDR models (e.g., Herograph [11]) are easily dominated by
the data-rich users. As shown in Fig. El, Tom, Mary, and
Mike all like reading romantic book JO ROBB, but Mary
and Mike still like reading magic book Harry Potter and
educational book To Kill a Mockingbird respectively, thus
Tom may also have potential interests in Harry Potter and To
Kill a Mockingbird. Consequently, based on the only sparse
interaction with JO ROBB, a biased representation of Tom
would be got and used to conduct ranking recommendation
tasks, which may lead to inferior performance. How to get
informative embeddings of tail users by complementing their
potential missing interactions becomes another practical chal-
lenge, which is frequently ignored in existing multi-target
CDR models.

Our Approach. To address the aforementioned challenges,
we propose a novel neural node matching based framework for
multi-target CDR with only partially overlapped users, named
as NMCDR. Our model mainly contains two modules, namely
intra-to-inter node matching module and intra node comple-
menting module, which corresponds to tackle CH1 and CH2,
respectively. The intra-to-inter node matching module further
contains two components, e.g., intra node matching component

and inter node matching component, as shown in Fig. 2] In
detail, To tackle CHI, a heterogeneous graph encoder is
used to model the direct user-item interaction. Then, inspired
by [14], the intra node matching component designs a fully
connected user-user homogeneous graph within every single
domain and conducts user-to-user knowledge fusion. With this
operation, the knowledge flow within each domain can be
eased and each user can directly consider nodes beyond their
original neighbors. The enhanced user representations are then
fed into the inter node matching component, which conducts
user-to-user knowledge fusion for both overlapping and non-
overlapping users. By doing this, the knowledge of all users,
especially the non-overlapping users, could be well extracted
and transferred without relying heavily on overlapping users.
To tackle CH2, the intra node complementing module shown
in Fig. [2] conducts user-to-item matching and tends to correct
the biased representations by complementing the potential
missing interactions for each user, especially for the tail users.
Moreover, we insert companion objectives into each module
to guide knowledge fusion procedures and guarantee the
simultaneous performance improvement of multiple domains.

Contributions. Overall, our major contributions can be
summarized as follows:

(1) We develop a novel neural node matching based frame-
work to address the multi-target CDR scenarios with (few)
partially overlapped users, which employ intra-to-inter node
matching module and intra node complementing module to
efficiently and effectively lead positive recommendation effect
on all domains.

(2) To obtain representative user embeddings, especially the
tail users with observed sparse interactions, we consider com-
plementing the potential missing information for each user to
correct the biased representation for ranking recommendation
tasks. To our knowledge, this paper is the first work to correct
the potential interaction bias in multi-target CDR scenarios.

(3) We conduct extensive experiments on four CDR scenar-
ios including both public and real-world large-scale financial
industry datasets to show the remarkable performance of the
proposed approach in kinds of evaluation metrics. Besides, we
provide theoretical insight to evaluate our model stability.

II. METHODOLOGY

A. Problem Formulation

In this work, we consider a general partially overlapped
multi-target CDR scenario composed of two domains Z and
Z. Let GZ = (U?,VZ,E%) and GZ = (U?, V% E?) be
the domain data, where U/, V, £ are the user set, item set
and edge set for each domain. Particularly, the overlapped
user subset is defined as U° = UZ N U%, while the non-
overlapped user subset for each domain is U7, = UZ\UC and
UZ, =U?\UO respectively. Given the observed data, multi-
target CDR aims to improve the recommendation performance
of both domains simultaneously by fusing and transferring
knowledge across domains.
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Fig. 2: Overview of NMCDR. In the intra node matching component, the black (i.e., ux — wu1) and blue (i.e., u1 — wuy) solid arrow denote two different
types of messages propagated by tail and head users respectively. In the inter node matching component, the orange (i.e., u1 — u¢) and blue (i.e., uz <> u¢)
dashed line denotes the knowledge fusing bridge for non-overlapping and overlapping users respectively. The black dashed line in intra node complementing
component denotes the predicted virtual user-item interactions. Lgo, Lgo in each component represent companion objective loss, while Lg LS Lé LS

indicates the final prediction loss.

B. Overview

Fig. illustrates the pipeline of our proposed neural
node matching based framework for multi-target cross-domain
recommendation (NMCDR), which mainly consists of two
modules: intra-to-inter node matching module and intra node
complementing module. We first utilize a graph encoder to
model direct user-item interactions by building a heteroge-
neous user-item graph. Then, the learned user representation
will be fed into the intra-to-inter node matching module, which
further consists of an intra node matching component and
an inter node matching component. The intra node matching
component enhances user representation by conducting within-
domain fully connected user-to-user information aggregating,
while the inter node matching component tends to transfer
knowledge for both overlapping and non-overlapping users by
conducting cross-domain fully connected user-to-user infor-
mation aggregating. After that, the intra node complementing
module corrects the biased user representation by exploiting
the potential missing user-item interactions for each user,
especially for the tail users. Finally, the prediction layer
outputs the affinity score of a user-item pair for each domain
individually.

C. Heterogeneous Graph Encoder

For domain Z, we first construct a heterogeneous user-
item graph GZ to learn the users’ preference for each domain
explicitly. For each user and each item in G, we introduce
corresponding embedding vectors u € R” and v € RP
as their representations, where D denotes the embedding
dimension. Specifically, the initialized representations for NV
users and M items of the domain Z can be obtained from the
following look-up table:

7’“’%71;127"' (1)

z z z
E :|:u1:"' :'UJVI:|~

Formally, UZ € RM7IXD and VZ € RVIXD are the
learnable embeddings for the user/item sets ¢/ and V. To
encoder the explicit user-item interactions within domain Z,
we utilize a vanilla GNN operation, which can be formulated
as message construction and message aggregation procedures.

Message Construction. Given a user-item pair (u?, v/

€r.0;), we define the message from the item v7 to user uy
: z )
with edge 7, as: .
muf(—vjz = fu1 (vj ’eu,ivj)7 (2)

where m,z, ,z

fu, (+) denotes the message mapping function in the user-item
graph, which takes item embedding and edge embedding as
the input. In practice, we instantiate f,,(-) and rewrite Eq.
as follows:

is the transferred message representation.

(v Wil + bilge)er o, 3)

m,z, .,z =
i J

b
Wzl
where thge € RP*Prge and bfge € RPrse are the trainable
weight matrix and bias vector during information propagation.

If user uZ interacts with item vZ, then ei_v, is set to 1,

else 0. Dyge is the transformationj dimension. Following the
graph neural networks operation [[15]], [16], we set 1/|N,,z| as
the graph Laplacian norm, where Nuiz denotes the ﬁrsf—hop
neighbors of user uZ. It is worth noticing that the message
mapping function can be replaced with any proposed graph
neural network kernels such as GCN [16] and GAT [17].

Message Aggregation. In this stage, we aggregate all the
messages from the user’s neighborhood to obtain his/her
representation. The aggregation function is formulated as:

ugy, = ReLU (1, z + > M,z ,z), )

vj EN“’iZ



where u ~denotes the representation vector of uZ after het-

erogeneous graph encoder, which consists of a self mapping
message 1, z = uj IWE e and aggregated neighboring mes-
sage. ReLU i is the activation function.

For domain Z, to obtain the user representations, we
construct the heterogeneous user-item graph G# and con-
duct subsequent message construction as well as message
aggregation operations being similar with domain 7.

D. Intra-to-Inter node Matching Module

As shown in Fig. the user representation obtained by
the heterogeneous graph encoder is then fed to the intra-
to-inter node matching module, which intends to effectively
fuse and transfer the knowledge of both overlapping and
non-overlapping users across domains without relying heavily
on common users. The intra-to-inter node matching module
further contains two components, e.g., intra node matching
component and inter node matching component. In what
follows, we will illustrate each component in detail.

1) Intra Node Matching Component: In most previous
GNN-based multi-target CDR methods [8]-[11], the user
representations derived from the graph encoder within each
domain are directly utilized for cross domain knowledge trans-
ferring. However, as the majority of users of each domain do
have few historical interactions, these tail users may be under-
represented based on their observed sparse interactions and
impair the subsequent cross domain knowledge transferring.
Thus we argue that it is critical to priory perform intra-domain
knowledge fusion for each domain. Inspired by [14], we design
a simple but effective fully connected homogeneous user-user
graph and conduct direct user-to-user information aggregating
like node-level matching in graph matching procedure [18],
which could enable each user to interact directly and consider
nodes beyond their original neighbors and thus ease the

knowledge flow within each domain.

Message Construction. During intra domain knowledge fus-
ing, we believe that information bridges between head users
and tail users should also be varied. Thus, for domain Z, we
first distinguish a user uZ as head user or tail user as follows:

z { V,z| < Khead
U; =

|Nu:Z| > ’Chead (5)
where .4 denotes the head/tail user discrimination thresh-
old. [N Z] represents the number of the items interacted by
each user uZ in the domain Z.
Then, by constructrng a fully connected user-user homoge-
neous graph GZ, . for each user u? the matching message
from a head user uZ and a tail user ul are formulated as:

head user
tail user ,

head zZ zZ
muz&uz = fhead( gliyuglk) (6)
tail Z zZ
mua_zleulz = ftail(ugl,iaugll) @)
head tail :
where m WZ 2 m u? u? are the message representations

from head and tail user respectrvely fheaa() and frqu (")
represent correspondlng message rnapplng function in graph
Ginira- Besides, mhcéi 7 and m!y » are represented by

the blue and black arrow in Intra node' matching module of

Fig. [2 respectively. In practice, we implement freqq(-) and

ftail :

head _ 1 Z zZ 7Z
muzeuf - ‘Nhgad‘ (uglkWhead + bhead)7
u?
tast 2wz Lz ®)
ai _
m,z .z = W(ugr,,wmu + biau)-
w?
:

where Wthd € RPnrgexDigm Wéll € RPnrgexDigm and
b7, ., € RPism pZ . c RPism are the trainable weight matri-
ces and bias vectors to transfer information from head and the
tail users respectively. D;g,, is a customized transformation

size. Similarly as above, we set 1/\/\/h8“d| and 1/\/\/m“| as

the graph Laplacian norm, where /\/ head and N tail denotes
the fully-connected head and tail user ‘set for u?.
Message Aggregation. For user u the message extracted

from the head and tail users are first aggregated according to:

zZ head
Uhead; = RGLU( Z mu?”(—ugL
U ENhgad )
u?
i
Z mtml ) (9)
uy <—ulZ )

uleN’tall
%4

uf,, = ReLU(

Then, instead of direct concatenating or adding operation,
we design a fine-grained gating mechanism to fuse these two
kinds of messages as follows:

Hiim = J("ﬁeadi WhZ + bg + utZaili WtZ + th)7

ugZQQ = tanh ((1 — Hgm) ® ufmdi + Hlim ® u,Zalll) (10)

where uZQ/ denotes the fused message vector for user u?.

94,
o(-) is the sigmoid function and ® is the Hadamard product.
W7 € RPiamXDiam W7 € RPiam*Diam and bjf € RPiom,
b7 € RPism are the trainable parameters. The representation

of uZ after intra node matching component is obtained as:
V4 zZ Z
Ug2;, = 92; +u91i' (1D

For domain Z, we construct the fully connected homo-
geneous user-user graph GZ, ~and conduct subsequent
intra knowledge fusion being similar to domain 7.

2) Inter Node Matching Component: In this component, we

conduct the node matching operation for both overlapped and
non-overlapped users to fuse and transfer knowledge across
domains. Being similar to intra node matching component, we
introduce a fully connected cross-domain user-user graph and
treat overlapped users and non-overlapped users with different
message transferring bridges.
Message Construction. The fully connected cross-domain
user-user homogeneous graph G;,.,- indicates that each user
in one domain is fully connected to the users in the other
domain. For each user u?, grven the overlapped and non-
overlapped user-user pairs (u uZ ) and (u uf), the cross-
domain message transferring is formulated as:

self Z
muz<—u fself( Ug2, aug2i)7
_ 12)
th zZ Z (
mOZ:TuZ fother(ugziv quk):

l
SQZJ; denotes the cross-domain message represen-

u;

tation from the same (overlapped) user in domain Z while

where m



other
mya

», is the cross-domain message representation from
other (non -overlapped) users in domain Z. fsetr and fother
are message mapping functions and we instantiate them as:

self Z z A
m o = Ugo, W +b
“iZFuiZ 92; self selfr

_ 1 Z wz z (13)
m Z<_uZ - ‘NL%V‘ (ug2k other + bother)7
u?
k2

where Wself € RPigm*Degm W2, e RPigmxDeam and
bZ, 5 € RDesm b2, € RDCW are the trainable parameters
to transfer the cross-domain knowledge among the overlapped
and non-overlapped users. D.g,, is the transformation di-
mension. We set 1/ |N£§r| as the graph Laplacian norm,

where /\/Z‘Z’T denotes the number of the fully connected non-

overlapped users from other domain Z with respect to u?.
As shown in Inter node matching module of Fig. [2| m </

Zeu
other

and m?;'¢" , are represented by the blue and the black solid
arrow, respeotlvely
Message Aggregation. For user uZ, the aggregated message
representations from the overlapped and the non-overlapped
users are computed as follows:

ufelfi :ReLU(mzﬁlf 2)

ZuZ’?
i i

z U other
uothem =ReL ( § : muZ(—uZ)'
i
cdr
ure/\/uiz

(14)

Then, we fuse the user representation wgo, with the over-
lapped cross-domain information ., as follows:

zZ zZ zZ zZ Z

ug32.‘ = Uy, Wcross + Usel f; (1 - Wcross)a (15)
zZ .z z z z

uqS* = Uy, Wcross + Usel f; (1 - Wcross)v

where WZ = € RPcom*Degm and WCTOSS € RPegm X Degm
denote the transformation matrices. Then, we utilize a gating
network to further enhance the user representation by adopting
the cross-domain message from the non-overlapped users.

Mathematically, the gating operation denotes as:

Hfir :U(ui%;f Wsz + sz + quther,- WOZ + bOZ)’

qug’ =tanh ((1 - Hch7) © ug?):‘ + Hchr © quthem)a (16)

Where {WSZ’ WOZ} [= RDCQMXchm and {bSZ’ bg} c Rchm
are the trainable weights and biases. o(-) is the sigmoid
function and ® is the Hadamard product. The representation
of uZ after inter node matching component is obtained as:

zZ

2z zZ
ugs, = ul, +ud,. (17)
1,

Similar inter node matching processes are operated on
domain 7.

E. Intra Node Complementing Module

Intra-to-inter node matching module complements the user’s
latent interests by transferring the information within and cross
domains, but the insufficiency of the user representation still
remains due to their observed sparse historical behaviors. In
order to further tackle this issue, we propose a node comple-
menting module to correct the biased representations before

ranking recommendation tasks. Concretely, we complement
the potential missing interactions by measuring the similarity
between the user and item representations (i.e., user-item
matching procedure) and then generate virfual link strength
for each domain. As for a user-item pair (uiZ ,ij ), the virtual
link strength can be calculated as follows.

exp(ugZ3 v-Z )

> exp(u 931;
'u]‘GNuZ

(18)

&, 7,72 — .
u vy ZT)

With the virtual link strength, we update the user representa-
tion as:

z _ .z
Ugy, = Ugs, + Z

2,2 V; ZwZ f+b'ref7
”J‘E-'vuz

19)

where W2, € RPeam*Dres and be € RPres are the
trainable parameters of the node complementing operation.
D,y is the transformation dimension. Similar intra node
complementing processes are operated on domain Z.

F. Prediction Layer

After obtaining user/item representations, we construct a
prediction layer to estimate the user’s preference towards the
target item as:

o(MLPs(uZ, |[v7)) 20)

Z —
yui,vj -

where MLPs are the stacked MLP layers with the input of
the concatenation of the user and item embeddings. o denotes
the sigmoid function. The prediction layer in the domain Z
is similar.

G. Companion Objective and Loss Function

Inspired by [[19], [20], we insert companion objectives into
each key module to regularize the embedding learning and
expedite model convergence during training. Given the user-
item pairs corresponding to each key component as mentioned
above, i.e. (u Z) (ug1 , Z) (qu R Z) and (ug3 , v9)
each of them is fed into a shared predlctlon la ger and we can
get the corresponding prediction outputs as g7, ygl, yg2 and

Z according to Eq. In this work, we adopt the Binary
Cg ross Entropy (BCE) Toss for the companion objectives. The
common definition of the BCE loss can be formulated as:

£(9,y) = —[ylog g + (1 — y) log(1 — 7)]. 1

¢ is the prediction result and y represents the ground-truth
label. The companion objectives can be written as follows:

>

u;eU? v ev?

z .z z .z z
‘CCO = [wle(ygow,,j ) yu,;vj) + w2£(yglui,,]. ) yqu)

P03 (a0, Yog) + Wl Vo, 22)

where yfwj is the ground-truth label for a real interaction

between u; and v; in domain Z, and wy 234 is the static or
dynamically computed weight per term. Besides, except for the
above companion objectives loss, the model final prediction
loss is written as:

cls - Z e yulvjyyiivj)'

u;€U?,
v ev?

(23)


10959
高亮文本


The companion losses and final prediction loss for
domain Z could be obtained in a similar way. Finally, the
overall loss could be obtained as:

Liotar = wsLéo + welLio +wilh, +wsLi..  (24)

where ws 6 7,¢ are tradeoff parameters.

H. Theoretical Analysis of Model Stability

To provide a theoretical insight into our model performance,
we conduct an essential stability analysis in this section.
Following the works [21]-[23]], the stability of one model
could be defined as:

Definition 1. Given user node u and item node v within a
graph, a GNN model framework ® is said to be stable if:

| 2u,0 — ZU’,v||2 <Aljww - x;Ha (25)

where u' denotes the user node u with perturbations. z,,
represents the predicted possible interactions of u and v by
framework ®. x,, and ¥, are the node embeddings for u and
u'. v denotes the Lipschitz constant.

To derive the upper bound of our model instability, we
compress our model into three layers, i.e., a heterogeneous
graph encoder layer (first layer), a fully connected homoge-
neous graph encoder layer (second layer), and a prediction
layer (third layer). The representations of w after the first and
second layer are formulated as:

1
hl == Wl u 7W1 v b
u Sp( al + n n v;\[ Ty + 1)7

Wi > hy+ba),
veG\u

1

h2 — 2h1
u Sp(WEL u+N_1

(26)

Similarly, we can get the representation h2 for node v. Then

Zu,0 = softmax(W2(h2||h2) + bs). 27

where W, W' W2 W2 and W2 are the transformation
matrix, by, ba, b3 are the bias, N, denotes the first-order
neighbor of the user u, G \ u denotes the users in the graph
G expect user u, n denotes the number of neighborhood of
u, N is the total number of node in graph. sp denotes the
softplus activation function, which is a smooth approximation
of the ReLU function. Similar operations are also operated on

u’. Consequently, we can get:

|2u,0 — 2w’ v|l2 = ||softmax(s.,.) — softmax (s, , )|z
3 2,1 1 2 1
S CSf”Wa ||2HSP(W(L hu + ﬁWn Z hv + b2)
vEG\u
2,71 1 2 1
sp(Wahii + 57— Wa > hy+bo)ll2

vEG\u
< CapCop W2l (IWE |21, — R 2

1
+ﬁ“W3H2H Z hy — Z harll2) 2,

vEG\u vEG\u

(28)

where Csy and C,, represents the Lipschitz constant for the
softmax and softplus function respectively. Since

1
lhe — b l|2 =l sp(Wazu + =W, § Ty + b1)
n ’UEN‘U.
1
— sp(Wial, + —W,} § v+ b

<Cop | Wy |2l — 2|2, (29)

For v; ¢ Ny, we can get hy, —h} = 0. For v; € N,,,

lhor = ha Il2
J

1 1
=lsp(Waa, + W > ax+ —Woau +b)
J kE./\fvj \u 7

1
Wi+ W T
P(Whea, +

1
K + ;Wiw; +b1)|2
J KEN,; \u J

1
<—Cop Wy |l2l|zu — @0]l2, (30)
nj

where n; is the number of neighborhood of v;. Then, we
can get the instability upper bound of our model as:

12002 wll2 < CapCo W 2 (1WE 12 Wa |2

Zvj ENu

1
+ T W W)l — 2l G1)

Noting that an appropriate instability upper bound is essential
for one model’s robustness (cannot be too large) and discerni-
bility (cannot be too small). As shown in Eq. we observe
the model instability upper bound is quite correlated with the
norm of transformation matrix. In ideal cases, each user/item
should have distinct learnable transformation matrices to get an
appropriate instability upper bound for the model. However,
too many learnable transformation matrices would result in
model parameter explosion and is quite unpractical. Thus, in
this paper, we distinguish head and tail users, according to
their number of neighborhood and utilize different learnable
transformation matrices instead of common one.

III. EXPERIMENTS

In this section, we first present the experimental settings,
including the datasets, evaluation metrics and comparison
methods. Then, we conduct several detailed experiments to
answer the following questions (RQs):

¢« RQ1: How does NMCDR perform on (few) partially

overlapped multi-target CDR scenarios compared with
the state-of-the-art methods?

e RQ2: How do the different modules of NMCDR con-

tribute to the performance gain of our method?

o RQ3: How do different hyperparameter settings of NM-

CDR influence the recommendation performance?

A. Experimental Setting

1) Datasets: We conduct experiments on four tasks derived
from a public and a real-world industrial dataset. Following
existing researches [0], [9]-[12], we evaluate our method on



Amazorﬂ [24] datasets, which consist of 24 disjoint item
domains and we select 3 pairs of domains to formulate three
tasks, i.e., “Music-Movie”, “Cloth-Sport” and ‘“Phone-Elec”.
Besides, we conduct another task on a large-scale financial
CDR dataset, which is collected from traffic logs of the online
recommender system of MYbank of Ant Groug’] The financial
dataset describes users’ interactions in financial products such
as debit, trust, i.e., “Loan-Fund”. The concrete statistics of
each task are summarized in Table [I

TABLE I: Statistics on the Amazon and MYbank datasets.

Dataset | Users Items | Ratings #Overlapping | Density
Amagon Music| 50841 43858[ 713740 o | 0.03%
oM NMovie | 87.875 38,643 | 1,184,889 ; 0.03%
Cloth | 27,519 9.481 | 161,010 0.06%
Amazon ¢ o | 107,984 40460 | 851553 O3 | 0009
Amagen PHONE [ 41820 17.043| 194,121 . 0.03%
200 plec | 27,328 12,655 | 170,426 ’ 0.05%
Loan | 147,837 1488 | 304,409 0.14%
Mybank  £ond | 65257 1319 | 86,281 6,530 0.10%

#Overlapping denotes the number of overlapping users across domains.

2) Evaluation Metrics: To verify NMCDR'’s capability
of handling partially overlapping multi-target CDR tasks,
we vary the overlapping ratio K, of each dataset in
{0.1%, 1%, 10%, 50%, 90%}. Different overlapping ratios in-
dicate that different numbers of common users are shared
across domains. For example, in Amazon “Music-Movie”
dataset with K, = 10%, the number of the overlapped users
is calculated like 15,081 * 0.1 = 1508. Following common
practice in previous CDR literature [25]-[27] , we utilize the
leave-one-out technique to evaluate the performance of the
developed model. Meanwhile, we follow the above works and
randomly sample 199 negative items (i.e., items are not inter-
acted by the user) along with 1 positive item (i.e., ground-truth
interaction) to form the recommendation candidates to conduct
the ranking test. Based on the ranking results, we utilize the
typical top-N metrics normalized discounted cumulative gain
(NDCG@10), and hit rate (HR@10) to evaluate the model
performance, which are frequently used in the CDR scenarios
[8]], [9], [28]]. For all the metrics, higher values indicate better
performance.

3) Comparison Methods: We quantitatively compare NM-
CDR against several state-of-the-art methods which can be
divided into three classes.

Single-Domain Recommendation Methods: (i) LR [29] is a
generalized linear approach which stacks several multi-layer
perceptrons (MLPs) to model the user-item interaction. (ii)
BPR [20] is a typical collaborative filtering (CF) based method
that measures the relevance between users and items by
matrix factorization and optimizes pairwise loss with negative
samples. (iii)) NeuMF [25] introduces a novel MF component
which replaces the inner dot semantic metric with a neural
architecture to learn an arbitrary mapping function.

Thttp://jmcauley.ucsd.edu/data/amazon/index_2014.html
Zhttps://www.antgroup.com/en

Multi-Task Learning Methods: (i) MMoE [30] utilizes
several domain-shared mixture-of-expert encoders along with
domain-specific gating network to optimize each domain-
specific downstream task. (ii) PLE [31] designs shared en-
coder and task-specific encoders explicitly and introduces a
progressive routing mechanism to extract and separate deeper
domain-related knowledge gradually,

Cross-Domain Recommendation Methods: We first use sev-
eral typical cross-domain models based on fully overlapping
conditions as baselines: (i) CoNet [4] utilizes multi-layer feed-
forward networks along with cross connections to enables
dual knowledge transfer across domains. (ii) MiNet [0] jointly
models three types of user interest and contains item-level and
interest-level attentions to distill useful information from user
historical behaviors. (iii) GA-DTCDR [5] models user-item
interactions via graph neural networks for every single domain
and introduces a pairwise attention-based sharing module to
transfer information across domains. Then, we adopt several
cross-domain models intending to handle partially overlapped
CDR tasks as baselines: (iv) DML [10] develops a novel latent
orthogonal mapping strategy by dual metric learning method
to preserve user relations between different domains. (v) Hero-
Graph [[11] introduces a shared global graph collecting users
and items from multiple domains and transferring the global
information to enhance each local domain recommendation
performance. (vi) PTUPCDR [[12]] utilizes pre-trained embed-
ding and a meta network to generate a personalized bridge
functions which can transfer the personalized preferences for
each user across domains.

4) Parameter Settings: To make a fair experimental com-
parison, we adopt the same hyper-parameters for all the
approaches. Specifically, the embedding dimension D is set
as 128, the batch size is set as 512, the learning rate is
fixed as 0.0001, and the negative sampling number is fixed
as 1 for training and 199 for validation and test. The Adam
optimizer is used to update all parameters. For the specific
hyper-parameters used in the comparison baselines, we follow
their reported values in the official literature. Additionally, for
NMCDR, the number of graph aggregation layers in each
component is set as 3 for the intra-to-inter node matching
module and 2 for intra node complementing module. Besides,
we set Dpge = 128, Djgp, = 128, Degm, = 128, Dyep = 128,
Khead = 7and w1 2 3.4,56,7,8 = 1. For all comparison models,
we run each experiment five times and select the best results.

B. Performance Comparisons (RQ1)

Tables report the HR@10 and NDCG@10 evaluation
metrics on four multi-target CDR tasks. The best results of
each column are highlighted in boldface, while the second-
best results are underlined. The performance of all mod-
els decreases with the decreasing of the overlapping ratio
K., which makes sense as fewer overlapping users may
make knowledge transfer across domains more challenging.
Our NMCDR achieves average 24.84% improvements on
Amazon datasets and average 3.31% improvements on
MYbank datasets compared with second-best baselines



TABLE II: Experimental results (%) on the bi-directional Music-Movie CDR scenario with different user overlapped ratio.

Music-d rec dation Movie-domain recommendation
Methods K.=0.1% Ku=1% K.=10% K=50% K.=90% K.=0.1% Ku=1% Ku=10% K.=50% K=90%
NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR
LR [29] 525 931 578 1003 592 1140 736 1441 9.74 1858 3136 47.08 31.41 47.01 31.61 47.62 31.66 4776 31.64 47.66
BPR [26] 297 663 292 677 267 576 279 6.15 292 626 21.63 3559 21.65 3561 21.79 3578 22.00 36.09 2197 36.14
NeuMF [25] 486 9.17 501 978 507 9.87 5.58 11.18 6.00 1193 2879 43.27 2896 42.84 29.02 4358 29.32 44.16 29.21 4391
MMOoE [30] 6.60 12.83 6.85 1425 695 14.69 9.02 18.30 10.44 20.70 30.20 48.54 31.15 47.12 3131 47.77 3132 47.84 31.80 48.07
PLE [31] 6.66 13.12 6.89 1426 7.25 14.60 9.00 17.64 10.08 19.78 31.72 47.47 31.83 4746 31.96 47.89 32.04 47.89 32.02 48.03
CoNet [4] 7.03 14.10 7.26 1440 748 1524 9.61 1947 10.19 20.75 31.06 47.07 31.26 47.24 31.30 47.42 3140 4755 3137 4751
MiNet [6] 5.19 1142 567 11.85 624 1243 884 17.16 937 17.69 2995 4478 30.22 4525 29.85 45.01 29.58 4484 29.67 45.13
GA-DTCDR [5] 7.03 14.03 7.17 1453 726 1460 954 19.17 10.16 1997 31.56 47.36 31.61 47.41 31.70 47.63 3190 47.77 31.85 4781
DML [10] 6.81 13.08 7.32 1354 799 1558 9.58 18.66 10.55 20.33 2636 40.84 27.06 4147 27.44 41.63 2736 41.76 2742 41.86
HeroGraph [11] 6.59 1340 7.44 1389 7.02 1449 9.15 1855 1034 2033 32.05 48.14 32.22 48.38 32.16 4840 3223 4852 32.18 4843
PTUPCDR [12] 7.60 1495 7.75 1523 828 16.58 9.89 20.08 10.97 21.31 31.80 47.31 31.92 47.65 31.92 47.84 3190 4794 3193 4796
NMCDR 829 16.28 843 16.52 850 17.00 11.26 21.58 12.28 23.19 33.39 50.22 33.57 50.67 33.70 5091 3396 51.13 3394 51.12
Improvement(%) 9.08 890 8.77 847 266 253 1385 747 1194 882 418 432 419 473 479 5.19 5.37 5.38 547 5.55
TABLE III: Experimental results (%) on the bi-directional Cloth-Sport CDR scenario with different user overlapped ratio.
Cloth-d rec dation Sport-d rec dation
Methods Kv=0.1% Ku=1% Kuw=10% K=50% K,=90% Kw=0.1% Ku=1% Ku=10% K=50% K,=90%
NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR
LR [29] 5.02 11.03 564 1158 632 1240 6.65 13.13 7.16 1418 924 1839 10.01 19.14 10.79 20.12 11.28 21.15 1145 21.36
BPR [26] 252 565 260 570 270 587 266 593 274 593 238 513 244 533 264 588 274 604 279 6.04
NeuMF [25] 2.88 7.02 348 7.65 426 875 435 882 435 916 619 1145 643 1243 6.71 1296 7.09 13.62 752 1441
MMoE [30] 6.03 1230 6.10 1246 620 1287 6.65 13.73 7.03 1450 9.89 1899 997 19.08 1043 19.84 10.89 2081 11.39 21.76
PLE [31] 585 11.62 6.02 11.85 629 1251 7.00 14.01 7.15 1435 998 1835 10.01 1844 1049 19.68 1131 2087 11.39 21.05
CoNet [4] 6.02 1206 6.13 1252 626 1285 6.88 14.02 733 1479 959 1830 9.68 1849 9.84 18.63 10.84 2052 11.23 21.35
MiNet [6] 507 1040 524 1061 541 1087 6.17 1251 6.66 1335 837 1605 862 1662 884 1698 972 1830 10.58 19.96
GA-DTCDR [5] 5.61 12.13 5.68 1228 6.22 1290 7.04 14.06 7.59 14.85 10.71 20.28 10.75 20.34 1091 2055 11.63 21.86 1225 22.96
DML [10] 537 1063 544 1090 559 11.10 631 1257 6.55 1296 6.51 1242 653 1249 6.62 1273 7.05 1347 775 1499
HeroGraph [11] 6.21 1230 6.34 1253 637 1275 7.06 1390 7.51 1475 1045 1953 1052 1991 11.06 20.74 11.77 21.73 1224 2275
PTUPCDR [12] 6.22 13.07 6.63 1324 6.79 13.76 7.36 14.78 7.58 15.52 10.66 19.88 1091 20.33 11.14 20.77 11.79 2220 12.18 2295
NMCDR 840 16.57 850 16.63 887 17.73 9.26 1833 9.54 19.05 13.52 2536 13.79 2553 14.06 26.15 1491 27.54 15.17 28.10
Improvement(%) 35.05 26.78 28.21 25.60 30.63 28.85 25.82 24.02 25.69 2274 2624 25.05 2640 2552 2621 2590 2646 2405 23.84 2239
TABLE IV: Experimental results (%) on the bi-directional Phone-Elec CDR scenario with different user overlapped ratio.
Phone-d rec dation Elec-domain recommendation
Methods Ku=0.1% Ku=1% Ku=10% Ku=50% K.u=90% Ku=0.1% Ku=1% Ku=10% Ku=50% K.u=90%
NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR
LR [29] 412 783 454 875 596 1203 13.06 2329 1503 26.58 19.67 31.43 1999 3191 1998 3248 20.88 33.83 2129 3447
BPR [26] 249 522 256 532 255 5.58 2.67 5.84 3.10 6.72 839 1535 847 1547 866 1576 9.80 1747 10.79 19.07
NeuMF [25] 345 6.73 354 7.07 401 8.34 7.79 1436 1040 18.65 15.82 25.25 16.04 26.12 1627 26.17 17.12 2743 17.77 28.60
MMOoE [30] 395 871 418 9.05 754 1556 13.66 2485 16.08 28.67 20.16 32.07 20.27 32.83 20.85 3324 21.05 34.05 21.64 34.88
PLE [31] 424 913 482 992 727 1455 13.84 2494 1622 2827 1995 32.61 20.32 32.73 20.75 33.08 21.60 3444 2221 35.60
CoNet [4] 393 816 4.02 846 6.88 1423 1321 2426 1567 2823 19.65 31.57 19.77 32.13 20.20 32.89 21.00 34.10 21.56 35.02
MiNet [6] 356 7.58 366 7.70 722 1420 1323 2351 1583 27.63 1822 28.61 1899 28.64 19.30 31.24 19.89 3190 20.64 33.14
GA-DTCDR [5] 3.70 7.70 4.41 9.18 7.54 1514 1413 2542 1636 28.80 20.39 32.85 20.55 3290 20.75 33.77 21.08 3408 2220 3575
DML [10] 456 939 462 9.88 7.08 1379 1276 2321 14.64 2624 1570 25.59 15.72 25.66 16.09 2598 1693 2738 17.54 28.48
HeroGraph [11] 4.21 9.03 432 976 7.77 1571 1422 2582 1633 2920 19.09 31.27 19.99 3191 21.11 3431 21.19 3431 21.58 34.84
PTUPCDR [12] 429 888 4.65 9.18 824 1630 1451 2582 16.84 29.39 20.51 32.73 20.60 3294 2093 33.890 21.80 35.17 2231 35.86
NMCDR 6.29 12.27 6.46 1298 10.82 20.98 17.44 30.87 19.18 33.03 2349 37.61 2391 37.84 24.17 39.03 2445 3949 24.60 39.84
Improvement(%) 37.93 30.67 3892 31.38 31.31 28.71 20.19 19.56 1390 12.39 14.53 1449 16.06 14.88 14.50 13.76 12.16 1228 1026 11.10

over all overlapping settings. Besides, we have the following
insightful findings:

1) For Single-Domain Recommendation Methods: (i) LR
with stable generalization ability consistently outperforms CF-
based methods (i.e., BPR and NeuMF) suffering from the data-
sparsity issue. (ii)) The multi-task methods and cross-domain

methods both embody the superior performance to single-
domain methods in most cases with the overlapping ratio range
10%-90%. However, their performances drop dramatically
under extremely small overlapping ratio (e.g. 0.1%) and tend
to be similar with LR, implying that they cannot effectively
collect and transfer the cross-domain knowledge.



TABLE V:

Experimental results (%) on the bi-directional Loan-Fund CDR scenario with different user overlapped ratio.

Loan-domain recommendation Fund-d rec dation

Methods K.=0.1% Ku=1% Ku=10% K,=50% K,=90% K.=0.1% Ku=1% K.=10% K.=50% K,=90%
NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR
LR [29] 4734 6759 4742 67.73 47.65 67.88 47.75 67.82 4787 68.08 21.97 34.57 22.08 35.65 2524 3683 29.70 46.14 31.48 50.98
BPR [26] 4293 6222 43.07 62.67 4320 6299 4324 6345 4337 6345 301 628 3.06 664 321 685 274 651 484 1044
NeuMF [25] 46.20 66.66 47.27 67.21 47.74 6792 48.01 68.19 4795 6827 21.53 33.86 21.87 34.07 2534 37.66 30.78 4881 30.14 48.73
MMOE [30] 4523 6645 4586 6688 46.87 67.58 47.81 68.60 47.92 6855 2049 34.88 20.59 3504 20.70 36.53 3192 5232 35.84 57.20
PLE [31] 4893 69.01 49.03 69.28 4936 69.40 4931 69.59 4939 69.79 21.82 36.09 22.13 36.16 2291 36.70 33.02 51.40 3502 55.37
CoNet [4] 47.85 68.05 48.06 68.25 4823 68.63 4837 6839 4843 68.65 18.07 29.47 18.60 30.65 20.29 33.03 29.14 49.06 3397 54.95
MiNet [6] 47.61 67.59 4824 6846 4884 6878 4890 69.01 4886 69.07 19.89 34.04 21.34 35.82 2378 37.75 32.18 52.61 34.89 55091
GA-DTCDR [5] 4594 66.51 47.65 68.09 4920 69.26 49.59 69.86 49.63 69.94 21.72 3251 23.05 3441 2540 38.00 33.19 53.32 36.60 57.29
DML [10] 47.12 67.84 4795 68.56 49.01 69.77 48.87 69.50 4884 69.56 21.01 3575 22.80 37.35 25.84 39.04 32.81 51.44 34.61 54.74
HeroGraph [11] 48.89 68.37 49.16 68.69 49.45 69.17 49.71 69.64 49.85 69.66 19.07 30.77 19.63 31.44 21.74 33.78 3223 51.11 3540 56.41
PTUPCDR [12] 48.01 68.48 48.32 68.84 49.14 69.32 49.55 6991 49.54 69.93 22.13 36.05 22.84 36.83 24.14 37.75 33.24 53.03 3561 56.24
NMCDR 4947 69.54 49.69 69.84 49.84 69.97 49.89 69.98 4991 70.06 2532 3947 25.69 39.75 26.38 40.46 3524 55.03 37.29 58.54
Improvement(%) 1.10 0.77 1.07 080 0.79 029 036 0.10 0.12 0.17 1441 937 1145 643 209 364 602 321 1.89  2.18

TABLE VI: Experimental results (%) on the bi-directional Cloth-Sport and Loan-Fund CDR scenarios under different density settings Dy.

Cloth-d rec dation Sport-d rec dation Loan-d recc dation Fund-d rec dation

Methods Ds=10% Ds=50% Ds=70% Ds=10% D:=50% Ds=70% Ds=10% D s=50% D s=70% Ds=10% D s=50% D s=70%
NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR
LR [29] 241 538 287 620 321 695 247 542 261 579 420 8.61 2330 32.84 31.03 42.66 38.90 53.03 14.54 23.03 18.33 28.43 19.89 30.67
BPR [26] 252 5.61 248 541 245 549 253 563 245 558 266 584 20.68 30.70 27.95 41.28 34.04 50.50 1.31 3.11 193 445 250 5.51
NeuMF [25] 2.61 5.78 274 596 275 596 248 539 268 590 337 7.02 23.62 33.13 31.41 45.04 37.55 54.66 1531 2343 17.47 2579 19.17 27.84
MMoE [30] 2.67 593 292 635 337 734 2.66 591 284 6.25 435 9.02 2340 3271 30.34 42.70 36.11 52.24 15.78 25.25 18.46 27.87 19.12 29.83
PLE [31] 251 551 278 6.12 331 7.10 2.57 5.64 273 591 426 874 2379 34.01 31.98 4429 41.02 56.44 16.28 24.55 17.57 27.89 19.75 29.23
CoNet [4] 2.83 6.11 281 6.11 340 7.09 251 560 276 6.18 422 8.68 23.11 33.62 31.38 4551 37.13 54.62 14.53 23.99 16.27 28.47 18.07 29.42
MiNet [6] 274 574 283 6.19 3.14 6.81 249 561 269 596 395 831 2455 3545 32.55 47.14 41.51 57.54 14.63 24.24 17.27 28.59 18.80 30.38
GA-DTCDR [5] 2.81 6.03 3.00 644 3.48 7.50 247 548 2.87 6.17 447 9.24 2415 3453 31.87 44.01 40.11 57.49 15.84 2590 19.35 31.75 22.17 32.96
DML [10] 2.60 5.64 284 623 3.19 685 241 536 287 626 3.54 741 2345 34.63 32.39 4598 3851 5539 16.28 24.60 20.00 30.88 22.62 33.52
HeroGraph [11] 2.62 5.68 298 642 333 7.18 259 574 274 6.13 425 887 24.61 3352 3243 43.76 38.09 54.44 1586 25.12 18.05 30.13 19.81 28.81
PTUPCDR [12] 2.77 6.03 2.89 6.21 3.62 7.72 238 535 2.82 6.34 432 888 23.76 34.17 3226 45.67 40.81 53.97 16.54 26.06 19.11 32.26 20.82 32.35
NMCDR 297 629 340 696 4.15 8.60 2.80 6.05 3.39 6.97 539 1046 2537 36.71 34.18 49.75 44.19 61.38 17.82 26.98 21.40 33.96 24.68 34.90
Improvement(%) 4.95 2.95 13.33 8.07 14.64 11.40 526 2.37 18.12 9.94 20.58 13.20 3.09 3.55 501 554 645 6.67 946 353 7.00 527 O9.11 4.12

2) For Multi-task Learning Methods: (i) In most cases,
PLE achieves better performance than MMOE, which indi-
cates that task-shared and task-specific components can avoid
harmful parameter interference across tasks. (ii) Under the
larger overlapping conditions (KC,, = 50% or 90%), the multi-
task methods could obtain comparable performance with cross
domain recommendation methods such as CoNet, MiNet and
GA-DTCDR. But such multi-task methods exhibit inferior per-
formance compared with cross domain recommendation meth-
ods based on partially overlapping settings, i.e., Herograph and
PTUPCDR, since they still rely heavily on overlapping users
to transfer knowledge across domains.

3) For Cross-Domain Recommendation Methods: (i) For
cross-domain methods based on fully overlapping conditions,
GNN based methods (i.e., GA-DTCDR) consistently perform
better than the traditional models (i.e., CoNet and MiNet),
which demonstrates the remarkable capacity of GNN to
model complex user-item interactions and aggregate beneficial
neighboring information. (ii) The performance of such fully
overlapped CDR models increases with the increasing of
overlapping ratio K., especially when IC,, = 90%, they show
comparable results with partial overlapping models (i.e., DML

and Herograph) in most experimental cases and GA-DTCDR
even achieves the second-best results for “Cloth-Sport” and
“Loan-Fund” scenarios. (iii) Compared with fully overlapping
CDR methods, the partial overlapping CDR models, i.e.,
Herograph and PTUPCDR, consistently exhibit better perfor-
mance and could achieve second best results in small over-
lapping experimental settings, i.e., X, = 0.1%-50%, which
indicates that modeling and transferring non-overlapping users
across domains is essential to improve recommendation quality
in general partial overlapped CDR scenarios. (iv) Though
PTUPCDR achieves remarkable success in most cases, the
model treats all users equally and does not pay special atten-
tion to the majority of data-sparse users. Thus, compared with
the proposed NMCDR, it possesses an inferior performance.

4) For Our NMCDR: (i) Comparing with other cross-
domain baselines, our proposed NMCDR consistently achieves
great performance improvements on all four CDR scenarios
with all evaluation metrics, especially when /C,, gets extremely
small, e.g., 0.1% or 1%. Differing from the other CDR base-
lines relying heavily on overlapped users to bridge connections
of multiple domains and then conduct knowledge transferring,
our well-designed intra-to-inter node matching module could



well propagate cross-domain information for both overlapped
and non-overlapped users. Furthermore, by introducing the
intra node complementing module, we correct the biased
representations for each user, especially for the tail users,
which conducts missing information completion. (ii) Tables
and [V] with the average interactions of items as (16.27,
30.66) and (204.57, 65.41) show the smaller improvement than
Tables with the average interactions of items as (16.98,
21.04) and (10.82, 13.46). The average interactions of items
means that the total number of user-item interaction divided
by the item numbers (for example, the average interactions
of items in Music domain is computed by 713,740/43,858
= 16.27). The higher average interactions of items would
ease up the effectiveness of the complemented users’ potential
missing interactions provided by our model, leads to the lower
improvement in Table [[I| and Table

5) Comparisons with different density: Besides, to verify
NMCDR'’s superior performance in CDR scenarios with dif-
ferent data densities, we further conduct studies by varying
the data density D; in {10%,50%,70%}. The experimen-
tal results of “Cloth-Sport” and “Loan-Fund” scenarios are
given in Table [VI} Taking the “Cloth-Sport” task as example,
D, = 50% indicates that the data densities of “Cloth” domain
and “Sport” domain change from 0.06% to 0.03% (computed
as 0.06% * 0.5 = 0.03%) and 0.02% to 0.01% (computed as
0.02% * 0.5 = 0.01%), respectively. The performance of all
models decrease with the decreasing of data density, which
makes sense as sparser data makes the representation learn-
ing and knowledge transferring quite challenging. It is also
interesting that the performance improvements of our model
against second-best baselines decrease with the decreasing of
D,. This phenomenon further verifies that too sparse user-item
interactions, i.e., D = 10% or 50%, would make all model’s
(including ours) representation learning procedure quite hard
and thus the improvement of our model is less remarkable.
Nevertheless, our method consistently outperforms all base-
lines in all sparsity experimental settings.

6) Model Efficiency: In this section, all the comparative
models are trained and tested on the same machine, which has
a single NVIDIA GeForce A100 with 80GB memory and Intel
Core i17-8700K CPU with 64G RAM. Moreover, the number
of parameters for typical PLE, MiNet, HeroGraph and NM-
CDR(ours) is in the same order of magnitude, which is 0.16M,
0.78M, 0.64M and 0.56M, respectively. The training/testing
efficiencies of PLE, MiNet, HeroGraph and NMCDR (ours)
processing the samples of one batch are 2.96x 10~*s/1.84x
10~%s, 7.65%x 10~4s/4.56x 10~ %s, 6.84x 10~ %s/4.09x 10~%s,
and 5.34x 107%s/3.92x 10~*s, respectively. In summary,
NMCDR could achieve superior performance enhancement in
(few) partial overlapping CDR settings while keeping promis-
ing time efficiency.

C. Online A/B Test (RQI)

We conduct large-scale online A/B tests on finan-
cial partially-overlapping CDR scenarios of MYbank of

AntGrouIﬂ In online serving platform of MYbank, large
number of users participate in one or multiple financial do-
mains, such as purchasing funds, mortgage loan or discounting
bills. Specifically, we choose three popular domains with
partially overlapped users, i.e., “Loan”, “Fund” and “Account”,
from MYbank serving platform to conduct the online testing.
The average statistics of online traffic logs for 1 day are
presented in Table Our method NMCDR along with
three baselines are deployed in the online environment for
performance comparison and the overall experimental results
from December Ist to December 15th are shown in Table
Besides, each model conducts 20% of the online traffic
for a standard A/B testing configuration. The standard CVR
metric is utilized as the evaluation metrics. We can observe that
NMCDR outperforms all the baselines over all domains with
the significant improvement about 6.81%, 4.70% and 6.58%
in three domains. The result verifies NMCDR’s capacity
of improving the recommendation performance of multiple
domains simultaneously in real online environment.

TABLE VII: Average statistics of online traffic logs for 1 day.

Dataset | Users  Items | Ratings #Overlapping | Density
Loan |45,263,394 48,282 (778,136,734 0.04%
Fund 801,349 1,039 479,504 488,836 0.06%

Account | 4,856,675 9,816 | 9,149,842 0.02%

#Overlapping denotes the number of overlapped users across domains.

TABLE VIII: Experimental results of the online A/B testing from 12.1 to
12.15, 2022

Loan Domain Fund Domain Account Domain

Control Group 10.50% 6.12% 1.89%
MMOE Group 12.14% 6.45% 2.11%
PLE Group 12.57% 6.69% 2.27%
DML Group 12.93% 6.81% 2.43%
NMCDR Group 13.81% 7.13% 2.59%
Improvement 6.81% 4.70% 6.58%

D. Model Analysis (RQ2)

1) Impact of Different Model Components: To verify the
contribution of each key component of NMCDR, we conduct
an ablation study by comparing with several variants: (i)
w/o-Igm: we remove the intra node matching component for
conducting intra knowledge fusion for both head and tail users
in every domain. (ii) w/o-Cgm: we remove the inter node
matching component for conducting inter domain knowledge
fusion and transferring across domains. (iii) w/o-Inc: we
remove the intra node complementing module for correcting
the biased user representations in each domain. (iv) w/o-Sup:
we remove the multiple supervisory signals into each key
module for guiding knowledge fusion and transfer procedure.
We conduct the ablation experiments with overlapping ratio
K. = 50% and report the results in Table Based on
Table we draw the following observations: (a) It is critical
to perform intra knowledge fusion for both head and tail
users before conducting subsequent cross domain knowledge

3https://www.antgroup.com/en
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transferring, especially for tail users, since their information
deriving from sparsely observed interactions may be biased
and harmful to other domains, which hurts the performance as
shown in w/o-Igm column. (b) When removing the inter node
matching component, our model cannot collect and transfer
knowledge for both overlapping and non-overlapping users
across domains, which hurts the performance significantly.
(c) Without the intra node complementing module, the under-
represented user embeddings would be used to conduct rank-
ing recommendation tasks and thus impair performance. (d)
Without the multiple supervisory signals into each key module,
the performance also drops obviously, which indicates that
effective supervision signals are essential to guide the learning
process of each module and result in satisfying results. (e)
Overall, Cgm provides the largest contributes for our method.
Besides, the multiple supervisory signals (Sup) into each key
module for guiding knowledge fusion and transfer procedure
brings slightly larger contribution than Igm and Inc.

TABLE IX: Experimental results (%) with different model variants. w/o
denotes the model without the corresponding component variant.

Model variants

Scenarios Metrics w/oTgm w/oCem w/oTnc w/oSup Ours
Music  NDCG@10 1028 9.30 1090 978  11.26
us HR@10 19.28 18.78 2089  19.16 21.58
Movie NDCG@I0 3284 3196 33.60 3260 33.96
HR@10  48.73 4801 5048 4893 5113

Clo,  NDCG@10  9.14 735 8.95 838 9.6
0 HR@I0  17.99 1514 1765 1759 18.33
oort  NDCG@I0 1475 13.02 1460 1398 1491
P HR@10  26.94 2435 2686  27.04 27.54
phope  NDCG@10 1650 1442 1705  17.09 17.44
o HR@10  29.47 2537 2970  29.82  30.87
Bl NDCG@I0  23.75 2082 2410 2413 2445
ec HR@I0  37.95 33.87 3826 3843 39.49

L NDCG@10  49.69 4940 4976  49.67 49.89
oan HR@10  69.83 69.32 6989  69.79 69.98
Fund  NDCG@I0 3484 3477 3510 3490 3524
u HR@I0  54.84 5435 5491 5480 55.03

E. Hyperparameter Analysis (RQ3)

1) Number of Matching Neighbors: To explore the impact
of the number of the neighborhood for intra and inter node
matching, we conduct ablation experiments by varying the
number of matching neighbors from 128 to 1024. The average
evaluation results (i.e., NDCG@10 and HR@10) for each
dataset are shown in Fig. |3| and we can observe that as the
number of matching neighbors increases, the recommendation
performance initially rises steadily and then descend when the
matching neighbors reach 1024. This phenomenon indicates
that too small matching neighbors would provide limited
transferred information, while too many matching neighbors
may introduce interference noise and impair the model per-
formance. In practice, we set 512 to balance the training
efficiency and model performance.

2) Threshold of Head/Tail User Discrimination: In this
part, we explore the impact of head/tail user discrimination
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threshold Kpeqq on model performance. If the historical in-
teractions of a user is greater than KCpeoq, then he/she is
regarded as a head user. Otherwise he/she would be treated
as a tail user. The experimental results are shown in Fig. ]
Firstly, the average performance gains of all tasks slightly rise
then descend with the increase of Kj,cqq. The small variations
of model performance indicate the robustness of NMCDR.
Besides, the variation tendency of model performance is
similar for different datasets, which may be caused by the data
pre-processing procedure as we remove the user with less than
5 interactions for each dataset.
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Fig. 3: Impact of number of matching neighbors.
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Fig. 4: Impact of threshold of head/tail user discrimination.

F. Visualization Analysis

Besides the quantitative evaluation, we also provide intuitive
user embeddings and try to visualize the effect of each key
component of NMCDR. Fig. [5] shows the t-SNE visualization
of the head (yellow dots) and tail (blue dots) user embeddings
on Amazon “Cloth-Sport” scenario with overlapping ratio
K. = 50%. In Fig. 5] the first column (Figs. [5[a), (d)), second
column (Figs. 5[b), (e)) and third column (Figs. [5(c), (f))
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indicate the obtained user embeddings after being processed
by initial graph encoder layer, intra-to-inter node matching
module and intra node complementing module respectively.
From it, we have the following observations: (i) After a
typical heterogeneous graph encoder, the head and tail user
embeddings for both “Cloth™ and “Sport” domains show clear
distinction as shown in Figs. a) and (d), but the tail user
embedding may be under-represented based on the observed
sparse neighboring nodes and such issue is often neglected
in previous work. (ii) As shown in Figs. 5[b) and (e), the
head and tail user embeddings tend to align by conducting
fully connected intra and inter knowledge transferring. (iii)
After intra node complementing module as shown in Figs.
EKC) and (f), the embedding distributions of tail users do
exhibit quite similar to that of head users by complementing
potential missing interaction information, which is essential
to get superior recommendation performance and in line with
our motivation.

0

(e)

-40 -20 0

@

-50 -5 00

Fig. 5: The visualization of learned user representations for evaluating the
effectiveness of NMCDR’s each key component.

IV. RELATED WORK

Multi-Target Cross Domain Recommendation is an effec-
tive method to improve the recommendation performance in
multiple domains simultaneously and to alleviate the long-
standing data sparsity and cold-start problem in recommender
systems. Generally, the existing works of multi-target CDR
can be roughly divided into the following two groups: cross-
domain models based on fully overlapping settings and cross-
domain models intending to handle partially overlapped CDR
tasks. To transfer knowledge across domains based on fully
overlapping settings, several excellent works focusing on fea-
ture combination [1]]-[3]] or bi-directional transfer mapping
strategies [4]-[7] have been proposed and achieved promis-
ing results. Especially, PPGN [3|] combines the dual-domain
features into the graph neural networks to learn the cross-
domain information, while CoNet [4]], GA-DTCDR [5]] and
MiNet [|6] mainly focus on designing the mapping functions
to fuse and transfer useful information across domains. As the
above learning frameworks primarily assume the existence of
fully overlapped users or items across domains, leading them
incapable of handling partially overlapped CDR scenarios. To
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alleviate this issue and develop models for partially overlapped
CDR settings, several recent efforts [8|—[|11] try to introduce
graphic neural networks to get both overlapped and non-
overlapped user embeddings by collecting user-item interac-
tions. Additionally, PTUPCDR [12] designs a meta network
to generate personalized bridge functions for each user. SA-
VAE [7] and VDEA [13] utilizes variational auto-encoder
(VAE) framework to exploit user domain-invariant embedding
across different domains. However, such partially overlapped
models treat all users equally and do not pay special attention
to the majority of data-sparse users and resulting in inferior
knowledge fusing and transferring effectiveness.

Neural Graph Matching intends to discover the node level
or graph level similarity between two given graphs [18], [32],
[33]]. Before GNNs-based methods, traditional graph matching
approaches usually measure graph similarity based on heuristic
rules, i.e., minimal graph edit distance [34], [35]], or graph
kernel based matching methods, i.e., random walks inside
graphs [36]], [37] and graph sub-structures [38]], [39]. In recent
years, GNNs-based graph matching methods are frequently
proposed and achieved great success. Li et al. [40] consider
computing the similarity of two given graphs by a carefully
designed cross-graph attention-based matching mechanism.
Xu et al. [41]] formulate the KB-alignment task as a graph
matching problem and models the local matching information
through a graph-attention based solution. Soldan et al. [42]]
introduces a Video-Language graph matching network and uti-
lize the mutual exchange of information to enhance the multi-
modal representation for video grounding task. Recently, Su
et al. [43]] proposes a neural graph matching CF-based model
to capture attribute interactions for recommendation system.
However, such CF-based graph matching framework cannot
be directly utilized in CDR scenarios when encountering data
sparsity issues.

V. CONCLUSION

In this paper, to develop a simple-yet-effective multi-target
CDR framework for the more general CDR settings with
only partially overlapped users or items, we propose a novel
node matching based framework, namely NMCDR. The de-
veloped model mainly contains two modules, i.e., intra-to-
inter node matching and intra node complementing module.
The intra-to-inter node matching module could effectively fuse
and transfer the knowledge within-domain as well as cross-
domain for all users, especially for the non-overlapping users,
without relying heavily on overlapping users. Additionally,
intra node complementing module complements the potential
missing information for each user to correct his/her biased
representation for ranking recommendation tasks, especially
for the tail users with observed sparse interactions. To our
knowledge, this paper is the first work to correct the potential
interactions bias in multi-target CDR scenarios. Extensive
experiments demonstrate the remarkable effectiveness of the
proposed approach in kinds of evaluation metrics and elaborate
ablation studies present the contribution of each module to the
final performance gain.
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